Using AIC for Model Comparison

library(MuMIn)
library(AICcmodavg)
## 
## Attaching package: 'AICcmodavg'
## The following objects are masked from 'package:MuMIn':
## 
##     AICc, DIC, importance
#load in the data set
banding_data <- read.csv("SD_banding_data.csv")
#omit NAs
banding_na <- na.omit(banding_data) 

Make a Model

mass_model <- glm(mass ~ species+age+fat+temp+season, data = banding_na, family = gaussian, na.action = na.fail)

Dredge the Model

#construct all models with dredge, compare them based on AICc scores and include species in every model
AICc_models <- dredge(mass_model, rank = "AICc", fixed = "species") 
## Fixed terms are "species" and "(Intercept)"
#make a list of models from the dredged data
model_list <- get.models(AICc_models, subset = TRUE)
#iew the first model
model_list[1]
## $`3`
## 
## Call:  glm(formula = mass ~ fat + 1 + species, family = gaussian, data = banding_na, 
##     na.action = na.fail)
## 
## Coefficients:
## (Intercept)          fat  speciesAMRO  speciesATSP  speciesCOYE  speciesDICK  
##     12.2045       0.8434      66.2555       3.5195      -2.2424      16.6629  
## speciesHASP  speciesLCSP  speciesLISP  speciesSAVS  speciesSOSP  speciesSWSP  
##     20.4866      -0.5007       3.1783       4.1756       7.6123       3.1393  
## speciesYEWA  
##     -3.5309  
## 
## Degrees of Freedom: 609 Total (i.e. Null);  597 Residual
## Null Deviance:       32420 
## Residual Deviance: 1052  AIC: 2092

Make a Pretty Table

model_name_list<-NULL #make an empty list

for (i in 1:16){
  model_name_list = c(model_name_list, as.character(model_list[[i]][['formula']]))} #loop through model output to extract formula for each model

model_name_listb <- model_name_list[seq(3, length(model_name_list), 3)] #select every third element from list and put it in a new list


modavg_table<-aictab(model_list, modnames = model_name_listb, #label the models with models name list
                     second.ord = TRUE,   #Use AICc instead of AIC
                     sort = TRUE) #Order based on model weight

#View table
modavg_table
## 
## Model selection based on AICc:
## 
##                                          K    AICc Delta_AICc AICcWt Cum.Wt
## fat + 1 + species                       14 2092.53       0.00   0.33   0.33
## age + fat + 1 + species                 16 2093.67       1.14   0.18   0.51
## fat + season + 1 + species              15 2094.49       1.96   0.12   0.63
## fat + temp + 1 + species                15 2094.63       2.10   0.11   0.74
## age + fat + season + 1 + species        17 2094.68       2.15   0.11   0.85
## age + fat + temp + 1 + species          17 2095.78       3.26   0.06   0.92
## fat + season + temp + 1 + species       16 2096.59       4.06   0.04   0.96
## age + fat + season + temp + 1 + species 18 2096.79       4.26   0.04   1.00
## age + 1 + species                       15 2192.40      99.87   0.00   1.00
## age + temp + 1 + species                16 2193.65     101.13   0.00   1.00
## age + season + 1 + species              16 2194.50     101.97   0.00   1.00
## age + season + temp + 1 + species       17 2195.75     103.23   0.00   1.00
## 1 + species                             13 2196.92     104.39   0.00   1.00
## season + 1 + species                    14 2197.99     105.46   0.00   1.00
## temp + 1 + species                      14 2198.33     105.81   0.00   1.00
## season + temp + 1 + species             15 2199.03     106.51   0.00   1.00
##                                               LL
## fat + 1 + species                       -1031.91
## age + fat + 1 + species                 -1030.38
## fat + season + 1 + species              -1031.84
## fat + temp + 1 + species                -1031.91
## age + fat + season + 1 + species        -1029.82
## age + fat + temp + 1 + species          -1030.38
## fat + season + temp + 1 + species       -1031.83
## age + fat + season + temp + 1 + species -1029.82
## age + 1 + species                       -1080.79
## age + temp + 1 + species                -1080.37
## age + season + 1 + species              -1080.79
## age + season + temp + 1 + species       -1080.36
## 1 + species                             -1085.15
## season + 1 + species                    -1084.64
## temp + 1 + species                      -1084.81
## season + temp + 1 + species             -1084.11